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1 Introduction

Cryptography is the study of techniques for transmitting messages in an altered form so as to
enable only intended recipients to undo this alteration and read them. This is called encryption.
In today’s financially and data-driven world, it is more vital and lucrative than ever to ensure
privacy of communication; naturally encryption is the foundation of this. Algebraic structures
and their relevance to the difficulty of factoring large numbers underpin these methods and as
such will be examined here, alongside the relatively lower complexity of obtaining large prime
numbers.

2 Units in Z/nZ

We briefly examine the group of units of Z/nZ, which underpins secure modular arithmetic and
is central to the cryptographic algorithms discussed later. To begin, we recall the definition of
a unit and a fundamental result in number theory:

Definition 2.1. Let R be a ring. An element x ∈ R is said to be a unit if there is an element
y ∈ R such that xy = yx = 1R. The set of all units is denoted R×.

Proposition 2.2. Given x, n ∈ Z, n > 0. Then x is invertible modulo n ⇐⇒ gcd(x, n) = 1.

Proof. Suppose [x] is a unit. Then there exists y ∈ Z such that [x] · [y] = [1] =⇒ xy ≡ 1
(mod n) =⇒ 1 = xy + qn for some q ∈ Z =⇒ gcd(x, n) = 1.
To see the converse, we deploy Bézout’s identity and the result follows.

Thus, in the case of Z/nZ, the group of units (Z/nZ)× consists of all integers modulo n that
are coprime to n, or equivalently:

(Z/nZ)× = {0 ≤ x < n | gcd(x, n) = 1}.

Example 2.3. Is [17] a unit in Z/3120Z? If so, find its modular inverse.
We first compute gcd(17, 3120) using Euclidean division.

3120 = 183 · 17 + 9

17 = 1 · 9 + 8

9 = 1 · 8 + 1

8 = 8 · 1 + 0

The final remainder not equal to zero is what we seek, hence gcd(17, 3120) = 1, which implies
that [17] is invertible and thus a unit. We find an inverse by using the extended Euclidean
algorithm:

1 = 9− 8

= 9− (17− 9)

= 2 · 9− 17

= 2 · (3120− 183 · 17)− 17

= 2 · 3120− 367 · 17.

That is, −367 · 17 = 1 + 2 · 3120 ≡ 1 (mod 3120). Hence the modular inverse of 17 is:

−367 + 3120 ≡ 2753 (mod 3120).
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3 Euler’s Totient Theorem

Definition 3.1. Let n be a positive integer. Euler’s totient function, denoted by φ(n), is defined
to be the number of non-negative integers x less than n which are coprime to n:

φ(n) := #{0 ≤ x < n | gcd(x, n) = 1} = |(Z/nZ)×|

Example 3.2. One can immediately see that φ(1) = 1, and φ(p) = p− 1 for any prime p. Less
obviously, we show the following for all p prime and α ∈ Z:

φ(pα) = pα − pα−1 = pα−1(p− 1).

Indeed, the numbers from 0 to pα − 1 which are not prime to pα are exactly those that are
divisible by p. Those numbers are pα−1, pα−2, . . . , p2, p. So we have pα−1 fewer numbers than
pα.

Theorem 3.3. (Euler’s Totient Theorem). Let n ≥ 1 and x ∈ (Z/nZ)×. Then

xφ(n) = 1.

Proof. From Lagrange’s theorem in group theory we know that for G a group and x ∈ G,
x|G| = 1. Let G = (Z/nZ)×, the group of units of the ring. Then by definition, we have the
result.

Corollary 3.4. (Fermat’s little theorem). Let p be a prime and x ∈ Z with p ∤ x. Then

xp−1 ≡ 1 (mod p).

Proof. Observe that x is a unit mod p ⇐⇒ p ∤ x. Then we see that p− 1 = φ(p) = |(Z/nZ)×|
and the result holds by Euler’s totient theorem.

4 Finite Fields of Order p

Finite fields, or Galois fields, are algebraic structures consisting of a finite number of elements
where all standard arithmetic operations are defined. Equivalently, finite fields are commutative
division rings with a finite number of elements. A finite field with p elements is denoted by Fp,
where p is a prime number.

Corollary 4.1. Let n be a positive integer. Then Z/nZ is a field if and only if n is prime.

Proof. If n = p is prime, then the number of units is φ(p) = p − 1, so Z/nZ is a field. If n is
not prime, then there exists some divisor d such that 1 < d < n and gcd(d, n) = d. Altogether,
[d] is a non-zero element of Z/nZ which is not invertible.

Definition 4.2. Let p be a prime. The field of order p is Fp = Z/pZ.

5 Public Key Cryptosystems

In the 1970s, mathematicians started building on the concept of symmetric-key cryptography
which was limited in its security, since encryption and decryption keys were often the same or
could be derived from each other. This brought about the genesis of Public Key Cryptography
and in particular the RSA Cryptosystem. The RSA algorithm is an encryption scheme designed
in 1977 by Ronald Rivest, Adi Shamir and Leonard Adleman. It allows encrypting a message
with a key (the encryption key) and decrypting it with a different key (the decryption key). The
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encryption key is public and can be given to everybody. The decryption key is private and is
known only by the recipient of the encrypted message. We require the following proposition to
understand the role of Euler’s totient function in RSA.

Proposition 5.1. If m,n are coprime, then φ(mn) = φ(m)φ(n).

Proof. By the Chinese remainder theorem,

Z/mnZ ∼= Z/mZ× Z/nZ.

Recognising that when an element (a, b) of R× S (where R and S are rings) is a unit, we know
that a and b are units of R and S respectively, we now have that

(Z/mnZ)× ∼= (Z/mZ× Z/nZ)× ∼= (Z/mZ)× × (Z/nZ)×.

Applying the definition of φ relating to the number of units of Z/nZ, we have

φ(mn) = |(Z/mnZ)×| = |(Z/mZ)×| · |(Z/nZ)×| = φ(m)φ(n).

The RSA algorithm is based on the following facts. Given two prime numbers p and q, and
a positive number m relatively prime to p and q, we use the previous proposition along with
Euler’s theorem to tell us that:

mφ(pq) = mφ(p)φ(q) = m(p−1)(q−1) ≡ 1 (mod pq),

noting the use of the obvious condition that p and q are coprime since they are prime, when
applying the proposition.
Assume now that we have two integers e and d such that e · d ≡ 1 (mod φ(pq)). Then we have
that:

(me)d = me·d ≡ m (mod pq).

So, given me we can recover m modulo pd by raising me to the dth power.
The RSA algorithm consists of the following:

1. Generate two large primes p and q. Find their product n = pq.

2. Find two numbers e and d (in the range from 2 to φ(n)) such that e·d ≡ 1 (modφ(n)). This
requires some trial and error. First, e is chosen at random, and the Euclidean algorithm
is used to find gcd(e,m), solving at the same time the equation ex +my = gcd(e,m). If
gcd(e,m) = 1 then the value obtained for x is d. Otherwise, e is not relatively prime to
φ(n) and we must try a different value for e.

3. The public encryption key will be the pair (n, e). The private decryption key will be the
pair (n, d). The encryption key is given to everybody, while the decryption key is kept
secret by the future recipient of the message.

4. The message to be encrypted is divided into small pieces, and each piece is encoded nu-
merically as a positive integer m < n.

5. The number me is reduced modulo n to give me ≡ m′ (mod n)

6. The recipient recovers m by computing (m′)d ≡ m (mod n)

Consider the following simplified example:
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Example 5.2. Let p = 3, q = 11. Calculating n = pq = 33. Compute φ(n) = φ(pq) =
(p−1)(q−1) = 2 ·10 = 20. Now, we choose e ∈ N such that 1 < e < φ(n) and gcd(e, φ(n)) = 1.
In this simple case, it is easy to see that we can choose e = 7. We now need d ∈ N such that
1 < d < φ(n) and e ·d ≡ 1 (mod n). If we take d = 3, we have e ·d = 7 ·3 = 21 ≡ 1 (mod φ(n)).
We obtain the following public and private key:

Public key = (e, n) = (7, 33), Private key = (d, n) = (3, 33)

Now if we let our message m = 2, our encrypted message becomes me = 27 = 128 ≡ 29
(mod n) = m′. The recipient receives m′ and computes (m′)d = 293 = 24389 ≡ 2 (mod n) = m.

Remark 5.3. The above example outlines the utilisation of RSA by the intended users, but the
reason for using encryption at all is to conceal information from everyone else. Thus, we must
discuss this method’s security.

The security of the RSA algorithm is built upon the asymmetry between two mathematical
tasks: it is much easier to find two extremely large primes p and q than it is for someone else
(usually a bad actor) who knows n = pq but neither p nor q to determine the two factors in n. In
general, finding large prime numbers is computationally feasible using probabilistic algorithms
such as the Miller-Rabin primality test [1], yet factoring n into its prime components p and q is
significantly harder when n is sufficiently large.

The prime generation process relies on testing candidate numbers for primality, which, on
average, can be achieved efficiently in polynomial time with modern algorithms. By contrast,
factoring n when its prime factors are unknown is a problem for which no efficient algorithm
exists within classical computation. Specifically, the most advanced algorithms, such as the
Quadratic Sieve Method [2] or General Number Field Sieve (GNFS) [3], have sub-exponential
complexity but still require vast computational resources when n exceeds several hundred digits.

To illustrate this disparity concretely:

• Generating two 512-bit prime numbers p and q can be done in a matter of seconds on
modern hardware, with many Python, MATLAB, etc., tools available for free.

• Factoring the resulting 1024-bit composite number n = pq could take years, even using
state-of-the-art factoring techniques and large-scale computational power [4].

This computational imbalance guarantees that the private key d, derived from φ(n), remains
secure as long as p and q remain secret. Any adversary attempting to decrypt an RSA-encrypted
message would need to factor n to recover φ(n) and ultimately d, an infeasible task for sufficiently
large n.

Thus, the RSA cryptosystem’s security is not merely about encryption but relies fundamen-
tally on the practical impossibility of solving the integer factorization problem for large numbers
within a reasonable time frame.

6 Elliptic Curve Cryptography

Until this point, the underlying groups have been those based on modular arithmetic. There
are many other classes of groups that have a purpose and niche within cryptography - with one
of those being the groups consisting of points on elliptic curves. These curves, when limited to
finite fields specifically, yield an inexhaustible supply of abelian groups which are manageable
within computation owing to the robust properties that this structure offers. For our purposes,
we will furthermore only consider fields of prime order p > 3.

Definition 6.1. Let p > 3 be prime. The elliptic curve over Z/pZ is the set of all pairs
(x, y) ∈ Z/pZ which satisfy

y2 ≡ x3 + a · x+ bmod p,
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together with a single element O, called the “point at infinity”, where a, b ∈ Z/pZ and 4a3+27b2 ̸=
0 (mod p). Let E(Z/pZ) denote the set of pairs (x, y) ∈ Z/pZ × Z/pZ fulfilling the above
equation (known as the Weierstrass equation) along with O and we have

E(Z/pZ) := {(x, y) : x, y ∈ Z/pZ and y2 ≡ x3 + a · x+ bmod p} ∪ {O}.

As opposed to RSA cryptography, what distinguishes Elliptic Curve Cryptography (ECC) as
an alternative encryption method? Consider the following theorem:

Theorem 6.2. (Every Elliptic Curve (E) is an abelian group). The set E is an abelian group
with neutral element O, provided addition P +Q and inverses −P are defined as follows:

1. -O = O and P + O = P = O + P

2. If O ̸= P = (x, y) then −P = (x,−y)

3. For Q = −P set P +Q = O and Q+ P = O

4. For P = (x, y) and Q = (x′, y′) with x ̸= x′, set P +Q = (x′′, y′′) where:

x′′ =

(
y′ − y

x′ − x

)2

and y′′ = −y +
y′ − y

x′ − x
(x− x′′).

5. If P = Q ̸= O, define P +Q = (x′′, y′′), where:

x′′ =

(
3x2 + a

2y

)2

− 2x and y′′ = −y +

(
3x2 + a

2y

)
(x− x′′).

Where we cannot have y = 0 in case 5.

This means that any elliptic curve is a group, namely an abelian one, and if defined over a
finite field, it will of course form a finite group. The above set of rules allows us to make a very
large set of groups. Determining the private key under such a construction will be extremely
difficult. This is because with the elliptic curve defined as a group, we can consider the discrete
logarithm problem:

Definition 6.3. If b is a unit modulo m and a is another unit with a ≡ bd (mod m), we say
that d is the Discrete Logarithm of a modulo m to the base b, and write d = logb(a). All
usual rules of logarithms still apply here.

Example 6.4. Modulo 14, we have log3(11) = 4, since 34 ≡ 11 (mod 14). It is easier to write
log3(11) = 4 (mod 6) as the order of 3 modulo 14 is 6.

Remark 6.5. In general, it is believed to be computationally infeasible to evaluate discrete
logarithms or extract roots modulo m for sufficiently large m. This elliptic curve discrete log-
arithm problem (ECDLP), which forms the foundation of ECC, is significantly harder to solve
compared to the discrete logarithm problem in other algebraic structures, such as finite fields.

Until 1990, no algorithms existed at all for solving discrete logarithms on elliptic curves that
forced the group’s structure to achieve subexponential time complexity. Even after advances
by Menezes, Okamoto, and Vanstone [2], it was shown that the only curves vulnerable to at-
tacks are the so-called supersingular curves. These curves can be identified and avoided during
implementation.

The strength of ECC hence stems from two key points:

• The best known algorithms for solving the ECDLP on a general elliptic curve still require
exponential time complexity, as opposed to subexponential methods such as the GNFS for
RSA.
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• For a properly chosen curve (non-supersingular and with order divisible by a large prime
factor), ECC offers equivalent security to RSA or Diffie-Hellman but with significantly
smaller key sizes.

For example, a 256-bit ECC key provides comparable security to a 3072-bit RSA key [5].
This efficiency makes ECC particularly attractive for modern applications, including resource-
constrained environments such as embedded systems, mobile devices, and secure messaging
protocols.

In conclusion, the computational complexity of the ECDLP, combined with careful curve
selection, ensures that ECC remains a highly secure and efficient alternative to RSA and other
public-key systems.
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