

# End of Internship Presentation

**Qronos Implementation, int3 datatypes** 

by Matteo Melis





#### Hello! I'm Matteo

- Recently graduated from BSc Maths and Computer Science at Queen's University Belfast.
- Working in the AIG AI team as a software developer intern, focusing on the Quark library.
- My main interests are in abstract algebra and ML.
- Outside of work I enjoy running, gym and playing football.

Introduction: GPTQ

(arXiv:2210.17323)

#### What it achieves:

- Fast and accurate PTQ algorithm for LLM's.
- Preserves perplexity/quality to a high level on low bit precision e.g. 3/4 bits. (current SOTA)

#### **Core Idea**:

We want:

$$argmin_{Q_l} \left| \left| W_l \tilde{X}_l - Q_l \tilde{X}_l \right| \right|_2^2$$
,

where  $\tilde{X}_l$  denotes the input at layer l,  $W_l$  is the weight at layer l and  $Q_l$  is the quantized representation of  $W_l$ .

#### How?

- Sequential, column-wise quantization with alternating <u>rounding</u> and <u>error diffusion</u>.
- Use a second-order (Hessian) approximation to guide each column's rounding.
- Immediately diffuse the rounding error to remaining columns (via  $H^{-1}$ ) so future steps compensate.

#### **Introduction: Qronos Motivation**

(arXiv:2505.11695)

| GPTQ                                                                                                                                                                                        | Pro/con |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Efficient and quality preserving with little fine-tuning and relatively small calibration data set.                                                                                         | •       |
| Diffuses the local quantization error to future columns.                                                                                                                                    | •       |
| At an arbitrary layer, the layer-wise objective uses the input matrix from the partially quantized model $(\tilde{X}_l)$ which carries propagated quantization errors from previous layers. |         |

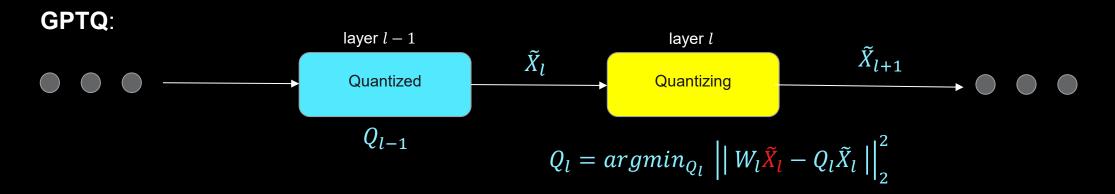
#### **Qronos goal**:

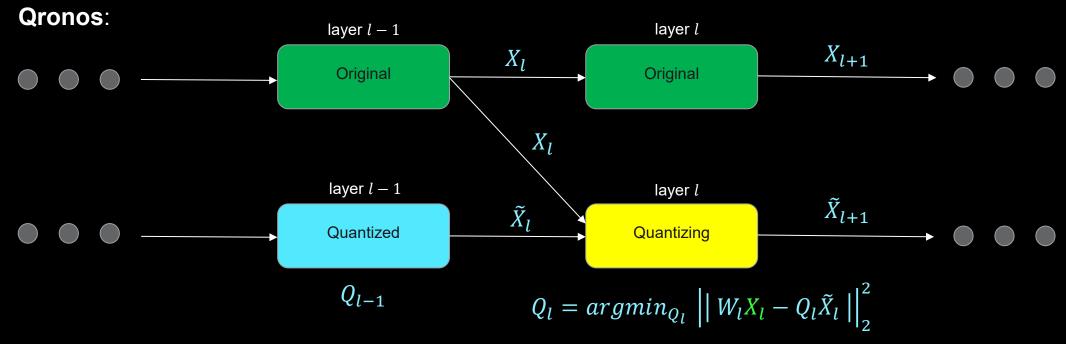
- Solve the mismatched layer-wise correction problem by tracking the true original input.
- Let  $\tilde{X}_l$  denote the input at layer l of the partially quantized model and let  $X_l$  denote the pre-quantized model's input for layer l, we shift our minimisation objective to:

$$argmin_{Q} \left| \left| W_{l} \tilde{X}_{l} - Q_{l} \tilde{X}_{l} \right| \right|_{2}^{2} \longrightarrow argmin_{Q} \left| \left| W_{l} X_{l} - Q_{l} \tilde{X}_{l} \right| \right|_{2}^{2}$$
(GPTQ) (Qronos)

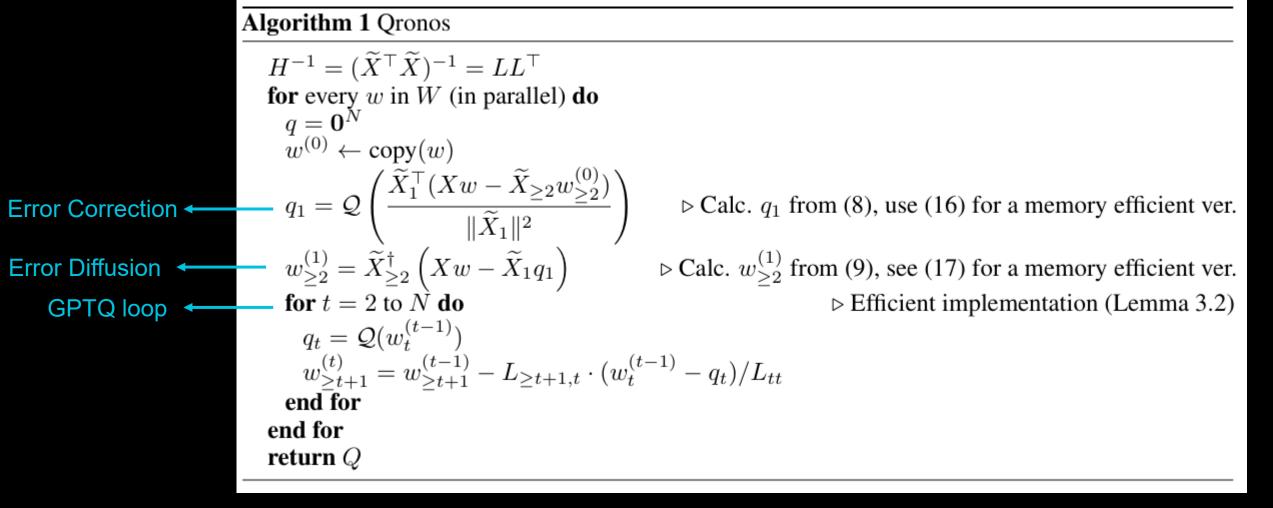


#### **Introduction: GPTQ vs Qronos**





# **Qronos Algorithm**



# **Qronos Algorithm**

- To ease notation and implementation, we can work with correlation matrices defined as  $G := \tilde{X}^T X \in \mathcal{R}^{N \times N}$  and  $H := \tilde{X}^T \tilde{X} \in \mathcal{R}^{N \times N}$ .
- Step 1 Error correction:

$$q_1 = Q\left(\frac{G_{1,\geq 1}w - H_{1,\geq 2}w_{\geq 2}}{H_{1,1}}\right),$$

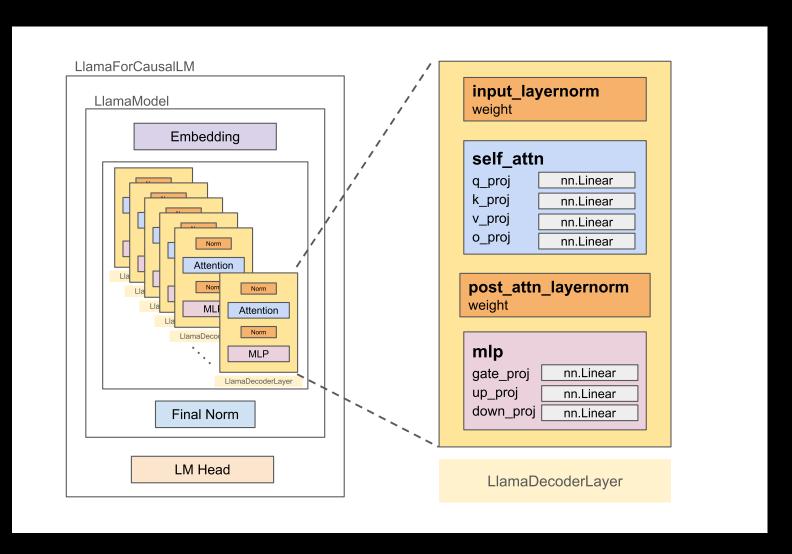
Step 2 – Error diffusion:

$$w_{\geq 2} = H_{\geq 2, \geq 2}^{-1} (G_{\geq 2, \geq 1} w - H_{\geq 2, 1} q_1),$$

Step 3 – **GPTQ loop**:

Calculate  $q_{\geq 2}$  using the error diffused  $w_{\geq 2}$ 

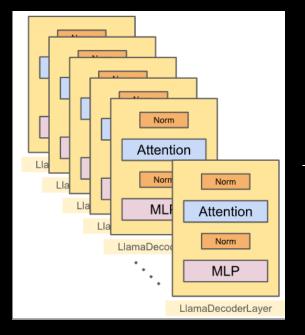
# **Quark Implementation: Core Algorithm Orchestration**



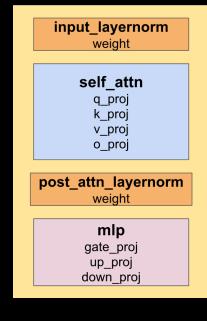
- Qronos applied iteratively to each linear layer.
- Allows efficient memory clean up.
- G matrix only in memory for each linear layer.

# **Quark Implementation: Core Algorithm Orchestration**

#### Llama Model



#### **Decoder Layer**



loop through

loop through

#### **Linear Layers**

self\_attn.q\_proj

mlp.down\_proj

#### For each linear layer:

- 1. Register original weight buffer
- Pre-compute  $H = \tilde{X}^T \tilde{X}$  and  $G = \tilde{X}^T X$  with forward hooks on a per sample basis
- 3. Apply core Qronos algorithm to layer
- 4. Store Q as weight matrix

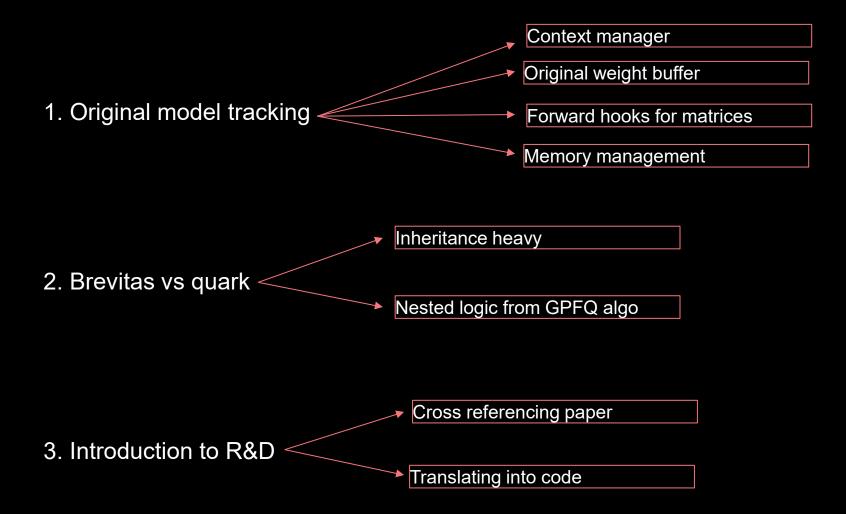
After applying Qronos to each linear layer:

Two forward passes on entire decoder block

Store X and  $\tilde{X}$  for next decoder block



# Quark Implementation: Challenges Faced



# **Experimental Results**

#### Llama-3.2-3B – group size 128

| Quant Algo | Quant Scheme    | WikiText2 PPL (↓) | Pileval PPL (↓) |
|------------|-----------------|-------------------|-----------------|
| N/A        | N/A             | 7.82              | 7.82            |
| GPTQ       | W_UINT4         | 8.07              | 17.82           |
| Qronos     | W_UINT4         | 8.01              | 8.14            |
| GPTQ       | W_INT3          | 9.87              | 11,117.4        |
| Qronos     | W_INT3          | 9.14              | 13.41           |
| GPTQ       | W_MXFP4_A_MXFP4 | 8.07              | 8.2             |
| Qronos     | W_MXFP4_A_MXFP4 | 8.02              | 8.16            |

<sup>\*</sup>More comprehensive list of evals can be found  $\underline{\text{here}}$ 



# **Experimental Results**

**Llama-3.2-1B – group size 128** 

| Quant Algo | <b>Quant Scheme</b> | WikiText2 PPL (↓) | Pileval PPL (↓) |
|------------|---------------------|-------------------|-----------------|
| N/A        | N/A                 | 9.75              | 9.75            |
| GPTQ       | W_UINT4             | 10.53             | 12.93           |
| Qronos     | W_UINT4             | 10.20             | 10.54           |
| GPTQ       | W_INT3              | 13.22             | 158.53          |
| Qronos     | W_INT3              | 12.54             | 15.68           |
| GPTQ       | W_MXFP4_A_MXFP4     | 12.42             | 13.46           |
| Qronos     | W_MXFP4_A_MXFP4     | 12.39             | 12.78           |

<sup>\*</sup>More comprehensive list of evals can be found here



# Side Project: Int3 Quantization support in Quark

#### **Motivation**:

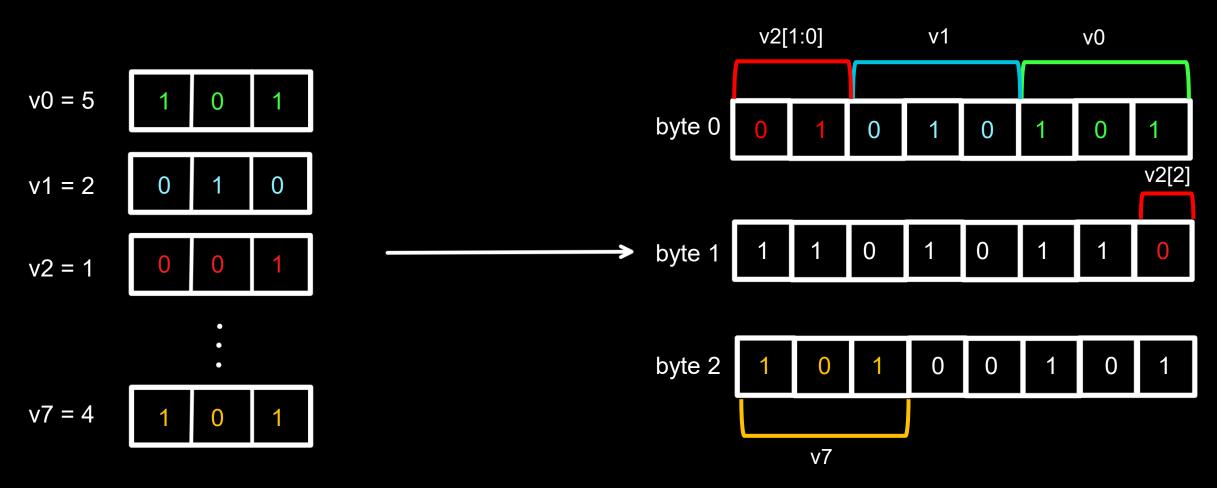
- Qronos paper shows strong results with int3 quantization.
- int3 is a 'happy middle ground' for low-bit precision.

#### <u>Implementation overview</u>:

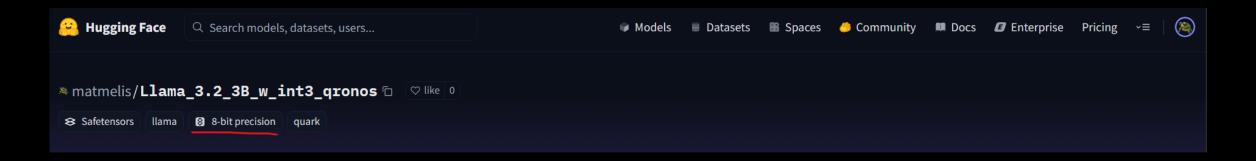
- Add int3 as a recognised datatype in Quark.
- Ensure it can be serialized properly i.e. exported and later used for inference.
- Serialization is non-trivial, int3 is not a native datatype in torch.

# Int3 Quantization: packing logic

Simple approach: map 8 uint3 values into 3 bytes (uint8)



# Int3 Quantization: serialized model exported to HF



| model.layers.0.mlp. <b>down_proj</b> (3) ~        |                |           |
|---------------------------------------------------|----------------|-----------|
| model.layers.0.mlp.down_proj. <mark>weight</mark> | [2 048, 3 072] | <u>U8</u> |
| model.layers.0.mlp.down_proj. <b>weight_scale</b> | [2 048, 64]    | F32       |
| model.layers.0.mlp.down_proj.weight_zero_point    | [2 048, 24]    | U8        |

# What I took away from the Internship

- First time "implementing a paper" very fulfilling
- Quantization "bootcamp"
- Contributing to Quark creating issues, merging quick fixes to bugs, pr discussions ...
- Many new challenges R&D, bitwise operators, evaluating and quantizing models
- Cross team collaboration major thank you to lan Colbert!

#### **Future Work**

Explore other PTQ/GPTQ enhancing algorithms – GPTAQ

Implement CUDA graphs for Qronos – 2-4x speedup at quantization time.

Further evaluations – more quant schemes, more eval metrices, block to block error

Implement more SOTA algorithms in quark – many recent papers that look promising

# Questions?



# References

- Qronos paper
- GPTQ paper
- Quark implementation of gronos
- Int3 pr
- Hugging face models



#