
End of Internship

Presentation

by Matteo Melis

Qronos Implementation, int3 datatypes

2 |

Hello! I’m Matteo

• Recently graduated from BSc Maths and Computer

Science at Queen’s University Belfast.

• Working in the AIG AI team as a software developer intern,

focusing on the Quark library.

• My main interests are in abstract algebra and ML.

• Outside of work I enjoy running, gym and playing football.

3 |

Introduction: GPTQ (arXiv:2210.17323)

What it achieves:

• Fast and accurate PTQ algorithm for LLM’s.

• Preserves perplexity/quality to a high level on low bit precision e.g. 3/4 bits. (current SOTA)

Core Idea:

• We want:

 𝑎𝑟𝑔𝑚𝑖𝑛𝑄𝑙
 𝑊𝑙

෨𝑋𝑙 − 𝑄𝑙
෨𝑋𝑙

2

2
 ,

where ෨𝑋𝑙 denotes the input at layer 𝑙, 𝑊𝑙 is the weight at layer 𝑙 and 𝑄𝑙 is the quantized representation of 𝑊𝑙.

How ?

• Sequential, column-wise quantization with alternating rounding and error diffusion.

• Use a second-order (Hessian) approximation to guide each column’s rounding.

• Immediately diffuse the rounding error to remaining columns (via 𝐻−1) so future steps compensate.

4 |

Introduction: Qronos Motivation (arXiv:2505.11695)

GPTQ Pro/con

Efficient and quality preserving with little fine-tuning and relatively small

calibration data set.

Diffuses the local quantization error to future columns.

At an arbitrary layer, the layer-wise objective uses the input matrix from the

partially quantized model (෨𝑋𝑙) which carries propagated quantization errors

from previous layers.

Qronos goal:

• Solve the mismatched layer-wise correction problem by tracking the true original input.

• Let ෨𝑋𝑙 denote the input at layer 𝑙 of the partially quantized model and let 𝑋𝑙 denote the

pre-quantized model’s input for layer 𝑙, we shift our minimisation objective to:

 𝑎𝑟𝑔𝑚𝑖𝑛𝑄 𝑊𝑙
෨𝑋𝑙 − 𝑄𝑙

෨𝑋𝑙
2

2
 𝑎𝑟𝑔𝑚𝑖𝑛𝑄 𝑊𝑙𝑋𝑙 − 𝑄𝑙

෨𝑋𝑙
2

2

 (GPTQ) (Qronos)

5 |

Introduction: GPTQ vs Qronos

Quantized Quantizing

Original Original

Quantized Quantizing

Qronos:

෨𝑋𝑙

𝑋𝑙

𝑋𝑙

𝑄𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑄𝑙
 𝑊𝑙𝑋𝑙 − 𝑄𝑙

෨𝑋𝑙
2

2

𝑄𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑄𝑙
 𝑊𝑙

෨𝑋𝑙 − 𝑄𝑙
෨𝑋𝑙

2

2

෨𝑋𝑙

𝑋𝑙+1

෨𝑋𝑙+1

GPTQ:
layer 𝑙

layer 𝑙 − 1

layer 𝑙 − 1

layer 𝑙 − 1

layer 𝑙

layer 𝑙

𝑄𝑙−1

𝑄𝑙−1

෨𝑋𝑙+1

6 |

Qronos Algorithm

Error Correction

Error Diffusion

GPTQ loop

7 |

Qronos Algorithm

• To ease notation and implementation, we can work with correlation matrices defined as

 𝐺 ∶= ෨𝑋𝑇𝑋 ∈ ℛ𝑁𝑥𝑁and H ∶= ෨𝑋𝑇 ෨𝑋 ∈ ℛ𝑁𝑥𝑁.

• Step 1 - Error correction:

 𝑞1 = 𝒬
𝐺1,≥1𝑤−𝐻1,≥2𝑤≥2

𝐻1,1
 ,

• Step 2 – Error diffusion:

 𝑤≥2 = 𝐻≥2,≥2
−1 𝐺≥2,≥1𝑤 − 𝐻≥2,1𝑞1 ,

• Step 3 – GPTQ loop:

 Calculate 𝑞≥2 using the error diffused 𝑤≥2

8 |

Quark Implementation: Core Algorithm Orchestration

• Qronos applied iteratively to each

linear layer.

• Allows efficient memory clean up.

• G matrix only in memory for each

linear layer.

9 |

Quark Implementation: Core Algorithm Orchestration

Llama Model

self_attn.q_proj

Decoder Layer

Linear Layers

mlp.down_proj

For each linear layer:

1. Register original weight buffer

2. Pre-compute H = ෨𝑋𝑇 ෨𝑋 and G = ෨𝑋𝑇𝑋 with forward

hooks on a per sample basis

3. Apply core Qronos algorithm to layer

4. Store Q as weight matrix

After applying Qronos to each linear layer:

1. Two forward passes on entire decoder block

2. Store 𝑋 and ෨𝑋 for next decoder block

loop through loop through

Q

10 |

Quark Implementation: Challenges Faced

1. Original model tracking

2. Brevitas vs quark

3. Introduction to R&D

Context manager

Original weight buffer

Memory management

Inheritance heavy

Nested logic from GPFQ algo

Cross referencing paper

Translating into code

Forward hooks for matrices

11 |

Experimental Results

Quant Algo Quant Scheme WikiText2 PPL () Pileval PPL ()

N/A N/A 7.82 7.82

GPTQ W_UINT4 8.07 17.82

Qronos W_UINT4 8.01 8.14

GPTQ W_INT3 9.87 11,117.4

Qronos W_INT3 9.14 13.41

GPTQ W_MXFP4_A_MXFP4 8.07 8.2

Qronos W_MXFP4_A_MXFP4 8.02 8.16

Llama-3.2-3B – group size 128

*More comprehensive list of evals can be found here

https://gitenterprise.xilinx.com/matmelis/qronos_evals/wiki/Qronos-eval-results-(using-quark-library)

12 |

Experimental Results

Quant Algo Quant Scheme WikiText2 PPL () Pileval PPL ()

N/A N/A 9.75 9.75

GPTQ W_UINT4 10.53 12.93

Qronos W_UINT4 10.20 10.54

GPTQ W_INT3 13.22 158.53

Qronos W_INT3 12.54 15.68

GPTQ W_MXFP4_A_MXFP4 12.42 13.46

Qronos W_MXFP4_A_MXFP4 12.39 12.78

Llama-3.2-1B – group size 128

*More comprehensive list of evals can be found here

https://gitenterprise.xilinx.com/matmelis/qronos_evals/wiki/Qronos-eval-results-(using-quark-library)

13 |

Side Project: Int3 Quantization support in Quark

Motivation:

• Qronos paper shows strong results with int3 quantization.

• int3 is a ‘happy middle ground’ for low-bit precision.

Implementation overview:

• Add int3 as a recognised datatype in Quark.

• Ensure it can be serialized properly i.e. exported and later used for inference.

• Serialization is non-trivial, int3 is not a native datatype in torch.

14 |

Int3 Quantization: packing logic

Simple approach: map 8 uint3 values into 3 bytes (uint8)

v0 = 5

v1 = 2

v2 = 1

v7 = 4

byte 0

byte 1

byte 2

0 1 0 1 0 1 0 1

v0v1v2[1:0]

1 0 1

0 1 0

0 0 1

1 0 1

1 1 0 1 0 1 1 0

1 0 1 0 0 1 0 1

v7

v2[2]

15 |

Int3 Quantization: serialized model exported to HF

16 |

What I took away from the Internship

• First time “implementing a paper” – very fulfilling

• Quantization “bootcamp”

• Contributing to Quark – creating issues, merging quick fixes to bugs, pr discussions ...

• Many new challenges – R&D, bitwise operators, evaluating and quantizing models

• Cross team collaboration – major thank you to Ian Colbert!

17 |

Future Work

• Explore other PTQ/GPTQ enhancing algorithms – GPTAQ

• Implement CUDA graphs for Qronos – 2-4x speedup at quantization time.

• Further evaluations – more quant schemes, more eval metrices, block to block error

• Implement more SOTA algorithms in quark – many recent papers that look promising

18 |

Questions?

References

• Qronos paper

• GPTQ paper

• Quark implementation of qronos

• Int3 pr

• Hugging face models

https://arxiv.org/pdf/2505.11695
https://arxiv.org/pdf/2505.11695
https://arxiv.org/pdf/2210.17323
https://arxiv.org/pdf/2210.17323
https://gitenterprise.xilinx.com/AMDNeuralOpt/Quark/pull/2734
https://gitenterprise.xilinx.com/AMDNeuralOpt/Quark/pull/2734
https://gitenterprise.xilinx.com/AMDNeuralOpt/Quark/pull/2734
https://gitenterprise.xilinx.com/AMDNeuralOpt/Quark/pull/2843
https://gitenterprise.xilinx.com/AMDNeuralOpt/Quark/pull/2843
https://huggingface.co/matmelis
https://huggingface.co/matmelis

	Default Section
	Slide 1: End of Internship Presentation
	Slide 2: Hello! I’m Matteo
	Slide 3: Introduction: GPTQ (arXiv:2210.17323)
	Slide 4: Introduction: Qronos Motivation (arXiv:2505.11695)
	Slide 5: Introduction: GPTQ vs Qronos
	Slide 6: Qronos Algorithm
	Slide 7: Qronos Algorithm
	Slide 8: Quark Implementation: Core Algorithm Orchestration
	Slide 9: Quark Implementation: Core Algorithm Orchestration
	Slide 10: Quark Implementation: Challenges Faced
	Slide 11: Experimental Results
	Slide 12: Experimental Results
	Slide 13: Side Project: Int3 Quantization support in Quark
	Slide 14: Int3 Quantization: packing logic
	Slide 15: Int3 Quantization: serialized model exported to HF
	Slide 16: What I took away from the Internship
	Slide 17: Future Work
	Slide 18: Questions?
	Slide 19: References
	Slide 20

